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Abstract

The calibrated wrench method is used in the tightening 
of bolts in manufacturing industries in the case of a 
large amount of tightening work. It is important to 

apply a large initial clamping force to ensure tightening reli-
ability and prevent self-loosening, fatigue breakage, and so 
forth. In this method, the clamping force of bolted joints is 
controlled using a torque wrench. However, since the clamping 
force is indirectly applied by a wrench, it varies greatly in the 
case of a large amount of tightening in a factory. Therefore, 
the calibrated wrench method is not so accurate from the 
viewpoint of clamping force control. It is conventionally 
thought that the distribution of the clamping force has the 
shape of a rhombus. When tightening torque and clamping 

force are considered to be two independent random variables, 
the clamping force is distributed within an elliptical confi-
dence limit. Here, we show that the distribution of equivalent 
stress also has an elliptical confidence limit. Considering the 
permitted limit for working load stress on a bolted joint, the 
elliptical distribution has a larger margin to the yield point 
than the conventional rhombic distribution. Using this 
feature, we can set a higher target tightening torque than 
before. We show that a higher tightening torque and initial 
clamping force can be obtained with smaller variation than 
before. Finally, we establish a method for maintaining the 
tightening reliability that involves applying a large clamping 
force by increasing the target tightening torque using the ellip-
tical confidence limit.

Introduction

Screw threads and bolted joints play an important role 
in many industrial products such as cars, construction 
equipment, industrial machines, railroad vehicles, 

bridges, electrical machinery, hydraulic equipment, airplanes, 
infrastructure, and plant equipment. Although screws and 
bolts are machine parts based on a simple principle involving 
a wedge and a spiral and have been in use for more than 2000 
years, problems such as poor bolting, self-loosening, and 
insufficient strength occur even today. Why do problems with 
screw threads still occur? Why do they continue to be  a 
machine element requiring special attention? The basic issues 
associated with bolted joints are listed in Table 1.

The turn-of-nut method, torque gradient control method, 
and plastic-region tightening are examples of methods devel-
oped to obtain a large initial clamping force (axial tension) 
with sufficient accuracy. However, the calibrated wrench 
method is still widely used because of the simple tool and 
easy standardization.

The optimum condition of tightening bolted joints used 
in a machine is defined as the state in which the joints are 
tightened with a sufficiently high clamping force to be free from 
breakage and loosening by any external force during machine 
operation [1, 2, 3, 4]. We previously proposed methods of load 
analysis and lifetime evaluation of fatigue failure in bolted 

joints [5]. We  conducted a fundamental observation and 
analysis of the loosening phenomenon and also measurements 
and analysis of the loosening of bolted joints of components 
and industrial machines [6].

Many studies have been conducted on tightening reli-
ability. For example, Bickford [7] described the theory of tight-
ening and introduced one of the equations relating the tight-
ening torque and preload. He also showed the variation of the 
nut factor (torque coefficient). In recent research, Nassar and 
Yang [8] theoretically investigated the torque-tension relation-
ship in terms of the coefficient of friction. Amir et al. [9] 
predicted the failure of bolted joints using von Mises stress. 
Kopfer et al. [10] derived torque and preload equations and 
the coefficient of friction at the thread.

Bolt tightening and slope dynamics are intimately related. 
As shown by the dot-dashed line in Figure 1, when tightening 
a bolt using a torque wrench or the like, the clamping force of 
the bolt also increases when a tightening torque is applied. 
When tightening is completed with the target tightening 
torque (red circle in the figure) and the torque wrench is 
removed, the initial clamping force (red arrow in the figure) 
is obtained. A large number of tightening operations are 
performed on a production line of a factory, where the initial 
clamping force varies greatly. Conventionally, this kind of 
distribution has been assumed to have a rhombic shape, as 
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shown by the hatched area in Figure 1. This is due to variations 
in the tightening torque and torque coefficient (nut factor). 
The tightening torque is obtained as the product of the 
distance L to the action point and the force G as shown in 
Figure 2-a). We also show schematically the bolt behavior and 
the balance of forces at the bolt screw flank and bearing 
surface in Figure 2-b). The basic formula of the calibrated 
wrench method can be derived from the balance of forces in 
the horizontal and vertical directions. Details are given in the 
next section (Equations (1) to (4)).

The tightening torque depends on the management 
status of the tool and the work posture of the operator. On 
the other hand, the torque coefficient depends on the friction 
coefficients of the thread surface and bearing surface, which 
in turn depend on the lubrication conditions and the proper-
ties of the screw. The cause of the variations in the tightening 
torque and torque coefficient is irrelevant, and when the 
tightening torque and torque coefficient are considered as 
independent random variables, their distribution has an 
elliptical shape as shown in Figure 3. The key point of our 
proposed method is that this elliptical confidence limit has 
a narrower range than the conventional rhombic distribu-
tion. This concept can be applied to not only the relationship 
between the tightening torque and the clamping force (axial 
tension or axial stress) but also the relationship between the 
tightening torque and the equivalent stress shown in ellip-
tical coordinates in Figure  3. Details will be  given in 
the following.

 FIGURE 1  Relation between tightening torque and 
clamping force (conventional method)

TABLE 1 Basic issues associated with bolted joints

Issues Details
1. How to maintain 
tightening 
reliability

	 1.	 High initial clamping force is required, therefore plastic tightening methods have been developed. However, 
applying a high initial clamping force is not straightforward, and even today a calibrated wrench method must 
be used in many cases.

	 2.	 Tum-of-nut method, torque gradient control method, plastic-region tightening, etc., are improved methods of 
obtaining a high initial clamping force.

	 3.	 Breakage of screw threads and damage through deformation (cross-sectional reduction) may be caused by 
tightening.

	 4.	 Establish a clamping force for tightening reliability.

2. How to analyze 
and measure load 
on bolted joints

	 1.	 An axial force, bending moment, or torsional torque is often applied to bolted joints.

	 2.	 How to measure and obtain the load on bolted joints.

	 3.	 Establish a load analysis method.

	 4.	 How to feed back the load measurement and analysis results to design and experimental stages.

3. How to prevent 
self-loosening and 
failure

	 1.	 Self-loosening easily occurs owing to the spiral shape and is affected by the depression of the bearing surface.

	 2.	 Fundamental study of the self-loosening phenomenon is very important.

	 3.	 Establish a method for predicting lifetime to loosening failure and residual clamping force (axial tension) 
estimation.

	 4.	 Establish a method for design based on judgement criteria for self-loosening.

4. How to prevent 
breakage (Fatigue 
breakage, etc.)

	 1.	 Bolted joints are often under high stress and subjected to a vibrational force and repeated external forces.

	 2.	 Areas of high stress concentration exist in the underhead fillet part and threaded portion.

	 3.	 As a result, fatigue breakage and hydrogen embrittlement may occur during machine operation.

	 4.	 Establish a method for predicting lifetime to fatigue failure and embrittlement failure.

	 5.	 Establish a method for design based on judgement criteria for infinite lifetime design and finite lifetime design.

5.Other issues 	 1.	 There are also many types of bolt and screw (coarse/fine screw threads with different strengths and 
electroplated coatings).

	 2.	 Many bolted joints are used in a single product.

	 3.	 Suitable maintenance is required to maintain the initial performance of bolted joints and long-term safety.
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Principle of Bolted Joint 
Tightening by Calibrated 
Wrench Method 
(Conventional View)
Generally, for the examples referred to in our previous papers 
[2, 3] and by Nassar and Yang [8], as shown by the dot-dashed 
line in Figures 1 and 2, the relationship between the tightening 
torque T and the clamping force (axial tension) P for a trian-
gular screw thread is theoretically expressed as

	
T KPd K K K Pd

d d tan d P

d sec p d

w w

s w

= = + +( )
= + +{ }

= + +

1 2 3

2 2

2

2tan ∅ β µ

µ α π

/

µµw
P( ) 2

.

	 (1)

	
K d d d

K K K

s w w= + +( )
= + +

2 2

1 2 3

2µ α β µsec tan /
	 (2)

	 K d K d K ds w w1 2 2 2 32 2 2= = =µ α β µsec tan/ / /, , .	 (3)

	 where =tan p dβ π/ ( ).2 	 (4)

Here, d is the nominal diameter, d2 is the basic pitch 
diameter of the external thread,  dw is the diameter of the 
bearing surface equivalent to the friction torque, p is the pitch, 
α is half of the thread angle, β is the lead angle, Φ is the friction 
angle of triangular screw thread flank Ø = ( )( )−tan 1 µ αs sec , 
K is the torque coefficient (nut factor), K1 is the torque coef-
ficient between screw flanks, K2 is the clamping force (axial 
tension) torque coefficient, K3 is the bearing surface torque 
coefficient, μs is the coefficient of friction between screw 
flanks, and μw is the coefficient of friction at the bearing surface.

The torque Ts exerted on the torsion of a bolt during tight-
ening is expressed as

	 T K K Pd K Pd Ts s= +( ) = =1 2 η .	 (5)

Here, Ks is the torsion torque coefficient (Ks=K1+K2) and 
η is the torsion torque ratio (η=Ks/K).

Then, the coefficients of friction are obtained as

	 µ αs sd T Pd K d= ( )−{ } ( )2 2 2/ / sec 	 (6)

	 µw w sd d k T Pd= ( ) − ( ){ }2 / / .	 (7)

When μ = μs = μw,

	 µ β
α

= −
+

2 2

2

Kd d tan

d sec dw

.	 (8)

When ds is the diameter of the stress area and As is the 
cross section of the stress area, the axial stress of a screw 
thread in the stress area σ and the shear stress of a screw thread 
in the stress area τ are expressed as the following equations:

	 σ = = ( )P A T KA ds s/ / 	 (9)

	 τ
π

η
π

= =16 16
3 3

T

d

T

d
s

s s

.	 (10)

Figure 4 shows the relationship between K and η in a 
metric screw thread for different μs, μw, and μ.

When the breakage of a bolted joint made of mild steel 
or carbon steel is explained in accordance with shear strain 
energy theory (the von Mises yield criterion), the equivalent 
stress σe is expressed as

	 σ σ τe = +2 23 .	 (11)

The variation in the tightening torque of a large number 
of bolted joints is represented by the tightening work coeffi-
cient a given by Equation (12). The coefficient a depends not 
only on the tightening tool accuracy but also on the manage-
ment state, the work posture, and the process control capa-
bility of the tool or shop floor at a production site. Bickford 
[11] has summarized the grade of variation for every tight-
ening tool and work method.

According to his classification, a variation of about 3-15% 
(a=0.03-0.15) is sufficient for the tightening work coefficient 
a in the calibrated wrench method. He indicated that the 
tightening accuracy can be ±20% (a=0.2) when the accuracy 
is low. Regarding how to control the quality of screw thread 
tightening in the production process, Kawasaki et al. [12] 
analyzed the concept of classifying the error (variation) for 

 FIGURE 2  Tightening work by wrench and behavior of bolt
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the tightening torque accuracy (±30%, a=0.3) of the calibrated 
wrench method.

The maximum and minimum tightening torques, tight-
ening work coefficient, and tightening coefficient Q are given 
by the following equations:

	 a T T Tmean= −( ) ( )max min / 2 	 (12)

	 T a Tmeanmax = +( )1 	 (13)

	 T a Tmix mean= +( )1 	 (14)

	 Q
P

P

a K

a K
= =

+( )
+( )

max

min

max

min

1

1
.	 (15)

Here, Tmean is the target tightening torque, Tmax is the 
maximum tightening torque in the distribution, Tmin is 
the minimum tightening torque in the distribution, Kmax is the 
maximum torque coefficient in the distribution, Kmin is 
the  minimum torque coefficient in the distribution, Pmax 
is the maximum clamping force in the distribution, and Pminis 
the minimum clamping force in the distribution.

In the case that a structure is tightened by a bolted joint, 
these equations are well established as part of general 
tightening theory.

In many studies on tightening carried out on the produc-
tion line of a factory, for example, it has been supposed that 
the variation in clamping force is distributed in the form of a 
rhombus, as shown by the hatched area in Figure 1. Point b 
in the figure is located at Pmax and point b' is located at Pmin.

On the other hand, Equation (11) can be expressed as

	
σ σ τ ηe

s s

e
s

e s

K

T

A d

T

A d
T A

d

d
= + = 






 + 









= = ′

2 2
2 2

3
1

3 4

Ø Ø / .

	 (16)

Here, Øe is the equivalent stress coefficient and T’ is the 
unit tightening torque.

Then, the maximum equivalent stress σemax and minimum 
equivalent stress σemin are similarly expressed by the 
following equations:

 	 σ e
e mean

s

a T

A d
max

max=
+( )1 Ø

	 (17)

 	 σ e
e mean

s

a T

A d
min

max=
−( )1 Ø

	 (18)

 FIGURE 3  Relationship between tightening torque, axial stress, and equivalent stress (proposed method)

 FIGURE 4  Relationship between K and η
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From Equation (16), when σe is treated as yield point σy, 
the relationship among σ, τ, σemax, and σy is obtained as 
Equation (19), which is illustrated in Figure 5 to help provide 
a general understanding. Note that the figure shows only the 
first quadrant of the ellipse.

 	
σ σ τ τ/ /y y

A B

( )
+
( )

=
2

2

2

2
1	 (19)

A and B: constants
Assuming that the hatched zone in the figure has a slope 

of C, the slope is expressed by the following equation:

 	 C d K ds= ( )( )/ 4η .	 (20)

In many tightening works, C takes maximum and 
minimum values that depend on the torque coefficient K and 
the torsion torque ratio η, that is, the coefficient of friction. In 
Figure 5, the outer curve of the hatched area is σemax/σy and 
the inner curve of the hatched area is σemin/σy in 
elliptical coordinates.

Distribution Principle for 
Product of two 
Independent Probability 
Variables
Two independent probability variables are denoted by x and 
y, and their product z is defined as

	 z xy= .	 (21)

Now, the product z is also a probability variable, and all 
three probability variables, x, y, and z, are assumed to have 
normal distributions. Accordingly, the probability density 

functions and normal distributions of x, y, and z are given in 
Table 2. When Equation (21) is rewritten using probability 
density functions, Equation (22) is obtained.

	 h z f x g y( ) = ( ) ⋅ ( )	 (22)

Since f(x) and g(y) are considered to be mutually inde-
pendent, h(z) becomes a coupling probability density function. 
h(z) can be expressed as

 	 h z
z

z

z

z

( ) = − −







1

2

1

2 2πσ
µ

σ
exp

(
.) 	 (23)

On the other hand, the right side of Equation (22) can 
be expressed as

 	

f x g y

x y

x y

x

x

y

y

( ) ⋅ ( )

= −
−( )

+
−( )



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
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


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2

1
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2
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2
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σ
µ

σ
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
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.
	 (24)

As mentioned above, since the product of f(x) and g(y) is 
a coupled probability density function and also a normal 
distribution, Equations (23) and (24) must be equivalent for 
all values of x, y, and z. Therefore, the following equations 
are obtained:

	 σ πσ σz x y= 2 	 (25)

	
z x yz

z

x

x

y

y

−( )
=

−( )
+

−( )µ
σ

µ
σ

µ
σ

2

2

2

2

2

2
.	 (26)

Since x and y are mutually independent, for x, y, and z to 
satisfy Equation (26), we find that x = μx and y = μy when z = μz. 
From these relations and Equation (21), we obtain

	 µ µ µz x y= .	 (27)

Here, the variable z is given by

 	 z rz z= +µ σ ,	 (28)

Here, r is the random variable of z, which serves as the 
standard score of a normal distribution when z is expressed 
in terms of μz and σz (percentile value in normal distribution).

Then, Equation (26) becomes

 	
x

A

y

B
x y−( )

+
−( )

=
µ µ2

2

2

2
1,	 (29)

where A = rσx

 	 B r y= σ .	

This demonstrates that the confidence limit is elliptical, 
as shown in Figure 6. An arbitrary point on the ellipse is 
denoted by p(x, y). Thus, z, the product of x and y from 
Equation (21), is given by the area enclosed by both coordinate 

TABLE 2 List of probability variables and functions

Variable pdf. Nomai distribution
x f(x) N(μx σx

2)

y g(y) N(μy σy
2)

z h(z) N(μz σz
2)

pdf.: probability density function

 FIGURE 5  Relation among σ, τ, σemax, and σy based on shear 
strain energy theory
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axes and the two straight lines passing through point p(x, y) 
parallel to them. Using the angle θ in the figure, we obtain z 
expressed by Z(θ) as follows:

	 Z A Bx yθ µ θ µ θ( ) = +( ) +( )cos sin .	 (30)

To determine the maximum value of Z(θ), it suffices to 
differentiate Equation (31) with respect to θ and determine 
the values of θ that give the maximum and minimum Z(θ).

	        ′( ) = − +( ) + +( )Z A B B Ay xθ µ θ θ µ θ θsin sin cos cos   (31)

In this case, it is clear that a point p(x, y) that gives the 
maximum value of Z(θ) exists in the first quadrant of the 
ellipse in the figure. From the form of Z(θ), it is a gradually 
decreasing function in the range of θ from 0° to 90° and has 
only one solution θz, giving the point at which Z(θ) becomes 
maximum. On the other hand, p’(x, y) is also the point giving 
the minimum value of Z(θ) with respect to the center of the 
ellipse; therefore, the maximum value Zmax and minimum 
value Zmin of Z(θ) can be expressed as follows:

	 Z A Bx z y zmax cos sin= +( ) +( )µ θ µ θ 	 (32)

	 Z A Bx z y zmin cos sin= −( ) −( )µ θ µ θ .	 (33)

Since it is assumed that z is also a normal distribution, 
from Equations (30) and (31), the mean value and standard 
deviation of Z(θ) are determined as follows:

	 µ µ µ σ σ θ θz x y x y z zr= + 2 sin cos 	 (34)

	 σ µ σ θ µ σ θz x y z y z z= +sin cos .	 (35)

Elliptical Confidence Limit 
of Clamping Force (Axial 
Tension)
When the axial tension coefficient k is expressed as

	 k K=1/ ,	 (36)

then

	 P kT d kT= = ′/ 	 (37)

	 k d s n w= + +( )2 2 2/ µ α β µsec tan dd 	 (38)

	 σ = = ( ) = ′P A kT A d kT As s s/ / / .	 (39)

In accordance with tightening theory, the relationship 
between the unit tightening torque T’ and the axial tension 
coefficient k is expressed by Equation (39). In the equation, the 
variables describing the dimensions of screw threads, such as 
the nominal diameter d and stress area As, can be treated as 
constants when solving the equation. The coefficient k essen-
tially becomes a function of μs and μw. On the other hand, the 
unit tightening torque T’ is determined by the length of the 
torque wrench and the force it exerts. Therefore, it is permis-
sible to consider k and T’ as independent random variables.

Now, f(T’) has the normal distribution N(μT, σT
2) and g(k) 

has the normal distribution N(μk, σk
2). Equation (29) becomes

 	
′ −( )

+
−( )

=′T

A

k

B
T kµ µ2

2

2

2
1,	 (40)

where A=reσT and B=r eσψe.
From Equations (30) and (31), the clamping force P and 

its derivative are respectively given by

	 P A BT k= +( ) +( )′µ θ µ θcos sin 	 (41)

	
′( ) = − +( )

+ +( )′

P A B

B A

k

T

θ µ θ θ

µ θ θ

sin sin

cos cos .
	 (42)

In accordance with our experimental study [4], we use a data 
detector to obtain tightening characteristics as shown in Figure 
7. Figure 7 also shows the setup for the tightening test. From the 
test results, the initial clamping force and axial stress are found 
to be distributed within an elliptical confidence limit, as shown 
in Figure 8; note that the figure is similar to Figure 6. When the 
axial tension coefficient k is expressed as Equation (36), the rela-
tionship between the tightening torque and the clamping force 
(axial stress) is determined as Equation (37) or (39).

 FIGURE 6  Elliptical confidence limit
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Normally, the torque coefficient K is approximately 
between 0.1 and 0.6. Thus, the relationship between k and K 
can be expressed by the linear equation k=-13.67K+8.59 as a 
result of our experimental approach. Figure 8 shows the results 
for the axial tension coefficient, which is plotted with an ellip-
tical confidence limit based on Equation (40). In the figure, 
almost all the data are plotted within the confidence limit. 
The validity of the elliptical confidence limit for the clamping 
force (axial stress) is therefore verified.

Then, the maximum and minimum clamping forces are 
respectively obtained as Equations (43) and (44).

	

P
r

r
a

r K K r K K

r

P

T
A

K P A

max

max min max min

cos

sin

= +









+( ) + −( )
′

1

2

θ

θ

KK

mean

K K

T

dmax min









.

	 (43)

	

P
r

r
a

r K K r K K

P

T
A

K P A

min

max min max min

cos

sin

= −









×
+( ) − −( )
′

1

2

θ

θ
rr K K

T

dK

mean

max min







 	 (44)

Here, rP and rK are random variables of P and K, respec-
tively, which serve as the standard scores of a normal  
distribution.

Elliptical Confidence Limit 
in Equivalent Stress
When the breakage of bolted joints is explained in accordance 
with shear strain energy theory, the relationship between the 
tightening torque and the equivalent stress σe is expressed by 
Equation (16). The coefficient ψe essentially becomes a function 
of μs and μw. It is permissible to consider ψe and T’ as inde-
pendent random variables similarly to k and T’.

Now, f(T) has the normal distribution N(μT, σT
2) and g(ψe) 

has the normal distribution N(μψe, σψe
2). If the equivalent 

stress σe has the normal distribution N(μv, σv
2), and if the 

equivalent stress σe is also expressed by the equation σe =μv + 
reσv, then Equation (29) becomes

 	
T

A

e

B
T e−( )

+
−( )

=
µ ψ µψ

2

2

2

2
1,	 (45)

where A= reσT and B= reσψe. re is the (substituted) random 
variable that corresponds to a cumulative percentage of a 
normal distribution when expressing the equivalent stress σe in 
terms of μv and σv (90% confidence limit re=1.645). The elliptical 
confidence limit given by Equation (45) is shown in Figure 9.

From Equation (30), σe is given by

	 σ µ θ µ θψe T e sA B A d= +( ) +( ) ( )cos sin / .	 (46)

Finally, the proposed maximum and minimum equiva-
lent stresses σe' can be obtained from Equations (47) and (48), 
which are based on Equations (32) and (33), respectively.

	
σ θ

ψ ψ ψ ψ θ

e e

emax emin e max emin e
mean

a

T

max cos

sin

′ = +( )×

+( )+ −( ){ }
1

2AA ds

	 (47)

	
′ = −( )×

+( )− −( ){ }
σ θ

ψ ψ ψ ψ θ

emin e

emax emin emax emin e
mean

a

T

1

2

cos

sin
AA ds

	 (48)

Now, σ'emax is equal to the value at s(T, ψe) in the lower 
figure of Figure 9, which is lower than the value at point 
q(T, ψe), at which the maximum is obtained by the conven-
tional method. The position of s(T, ψe) is lower than that of 
q(T, ψe). Therefore, the value at point s has a margin to the 
yield point and can be moved up to the position of point q, as 
shown in the upper figure of Figure 9, when using the elliptical 
confidence limit.

Figure 10 shows the equivalent stress coefficient plotted 
as a 95% elliptical confidence limit (solid line) and a 99% 

 FIGURE 7  Setup for tightening test on bolted joints

 FIGURE 8  Results for axial tension coefficient plotted 
within elliptical confidence limit and relationship between k 
and K (K=0.1-0.6) [4]
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elliptical confidence limit (dashed line) obtained in the experi-
mental study [4]. Almost all the data lie within the 95% ellip-
tical confidence limit.

The relationship between the maximum equivalent stress 
σ'emax and the lower limit σymin can be expressed by Equation 
(49), in which c' is the true initial equivalent stress ratio.

 	 ′ = ′σ σemax yminc max 	 (49)

The new proposed target value T'mean of the tightening 
torque is expressed by Equation (50), which can be obtained 
by solving Equations (47) and (49).

	

T
c A d

a

mean
ymin s

e

emax emin

emax emin

′ =
′

+( )
+( )

+ −( )

2

1

max

cos

σ

θ
ψ ψ

ψ ψ ssinθe












	 (50)

Here, ψemax is the maximum equivalent stress coefficient 
in the distribution, ψemin is the minimum equivalent stress 

coefficient in the distribution, and θe is the angle corre-
sponding to the coordinates of point s(T, ψe).

Thus, the main purpose of this figure is to show that the 
data are distributed in the ellipse shown in the upper panel 
of Figure 9 rather than the rectangle in the lower panel.

Experimental Results of 
Thread Characteristics
The coefficient of friction is highly variable, as also shown by 
the experimental results of Nassar and Yang [8]. However, it 
is considered that the variations in the torque coefficient K 
and coefficient of friction μ can be reduced by changing the 
lubrication condition, the limitation of the bolt to be tight-
ened, and the limitation of the tightening tool, and by the 
appropriate periodic inspection and management and stan-
dardization of the operation. Table 3 shows the tightening test 
results for a large number of bolts [2]. In contrast to the tight-
ening test under the dry condition, that under lubrication 
with machine oil shows small variations of the coefficient 
of friction.

 FIGURE 9  Elliptical confidence limit for equivalent 
stress [2]

 FIGURE 10  Results for equivalent stress coefficient plotted 
within elliptical confidence limit

TABLE 3 Experimental values for torque coefficient K, torque 
ratio η, coefficient of friction μ, and equivalent stress coefficient 
ψe in bolted joint tightening [3]

Lubrication Dry Machine Oil
Parameter Max Min Max Min
Axial Tension Coefficient k 4.167 1.508 6.098 4.184

Torque Ratio η 0.620 0.250 0.620 0.250

Equivalent Stress Coefficient ϕe 6.443 2.490 7.832 4.630

Friction Coefficientn μ(μs = μw) 0.536 0.183 0.182 0.119

θe (Maximum Equivalent Stress) 60.7° 50.4°

θP (Maximum Axial Tension) 61.2 ° 43.4 ° ©
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Here, θe is the angle corresponding to the coordinates of 
point s(T, ψe) on the elliptical confidence limit giving 
maximum equivalent stress (see Figure 6) and θp is the angle 
giving the maximum and minimum of the axial tension distri-
bution on the elliptical confidence limit.

Analysis of Clamping 
Force and Equivalent 
Stress Distribution of 
Bolted Joints
Using the results in Table 3, we investigated how the elliptical 
confidence limit changes with the tightening work coefficient 
a and the coefficient of friction μ. Figure 11 shows the change 
in the dispersion of the elliptical confidence limit with a. It is 
considered that a should be in the range from 0.2 to 0.3 in the 
preparation of the tightening torque standard for an entire 
factory or company. In each production process where the 
work site is fixed, a is likely to be set in the range from 0.1 to 
0.2. Furthermore, in the case where lubrication, limitation of 
the bolts to be tightened, limitation of the tightening tools, 
and appropriate periodic inspection and control are 
performed, it is considered that a can be set in the range from 
0.05 to 0.1.

From the normalized tightening torque, the tightening 
coefficient a was determined to be 0.122 at the 95% confidence 
limit and 0.161 at the 99% confidence limit of the range in the 
previous study [4]. It is shown that the area of the elliptical 
confidence limit can be greatly reduced by reducing the varia-
tion of the tightening work coefficient. We also experimentally 
found that the tightening work coefficient was 0.122 as 
mentioned above, and if the range of working conditions is 
narrowed, it is possible that the tightening work coefficient a 
can be considerably reduced.

Figure 12 schematically shows the state of the elliptical 
confidence limit under the following combinations 
of conditions:

	 1.	 a=0.3, μ=100%,
	 2.	 a=0.2, μ=90%,
	 3.	 a=0.1, μ=80%,
	 4.	 a=0.05, μ=70%.

The dispersion of the coefficient of friction μ can be seen 
to be small under the same tightening conditions as in the 
case of obtaining the tightening work coefficient. To determine 
these conditions, as described in the previous study, tightening 
tests with various bolts, tools, and lubrication conditions are 
essential [4].

From the figure, it can be seen that higher tightening 
torque, higher axial stress, and higher equivalent stress can 
be obtained with small variation as a result of selecting a 
suitable value of a, that is, as a result of an approach based on 
production technology.

Summary/Conclusions
It is important to provide high initial axial tension to ensure 
tightening reliability and prevent self-loosening and fatigue 
breakage. In our previous study, the statistical distribution of 
the magnitude of the combined stress (equivalent stress) was 
formulated and proposed using shear strain energy theory. 
In this study, the torque coefficient and equivalent stress 

 FIGURE 11  Control of tightening work coefficient

 FIGURE 12  Distribution of clamping force and 
equivalent stress
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coefficient, which are both affected by the coefficient of 
friction, were also formulated for a bolted joint tightened by 
the calibrated wrench method.

The conclusions of this study are as follows.

	 1.	 In general, the variations (confidence limit) of 
clamping force and equivalent stress for a large 
number of bolted joints tightened at a factory site are 
conventionally thought to have a rhombic 
distribution. However, when considering the 
tightening torque, clamping force, and equivalent 
stress to be independent random variables, the 
distribution becomes elliptical.

	 2.	 The elliptical confidence limit is inside the rhombic 
variation, so the variation is smaller. Therefore, the 
maximum value within the variation has a larger 
margin to the maximum clamping force (or yield 
point, etc.) for an elliptical confidence limit than for a 
rhombic variation.

	 3.	 It is valid to consider k and T’ and also ψe and T’ as 
independent random variables. Then, from the results 
of theoretical analysis, the relationship between k and 
T’ and also the relationship between ψe and T’ are 
expressed as elliptical confidence limits.

	 4.	 Using this elliptical confidence limit distribution, 
we formulated the procedure of analyzing the 
optimum tightening torque, and the results for a 
metric coarse screw with different tightening work 
coefficients a are shown in the appendix as an 
example of a trial calculation.

	 5.	 Under such circumstances, in this study, the 
conventional viewpoint is expanded and the 
viewpoints of the elliptical confidence limit and 
quality and process control are introduced, which 
should contribute to improving the tightening 
reliability of bolted joints.

To maintain the tightening reliability of bolted joints, 
standardization of the tightening work in a production site is 
very important. We think that this method will be useful for 
establishing job standards (technical engineering standards).
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Appendix
OPTIMUM TIGHTENING TORQUE
(METRIC COARSE SCREW THREAD)
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