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A Study on the Confidence Limit for Two
Independent Probability Variables in

Engineering Problems*
(Applications to Limit of Transmitted Torque in Disk
Clutch and Bolt Axial Tension Control)

Soichi HAREYAMA** and Shotaro KODAMA***

The problem of the product of two independent probability variables which are
normally distributed was theoretically analyzed using the confidence limit ellipse. By
applying z=xy type problems to a disk clutch, the limit of transmitted torque was
rationally calculated. On the axial tension control in bolted joints for the z=x/y type
problem, experimental analysis concerning bolt tightening by the calibrated wrench
method was carried out under dry, oil and anaerobic adhesive conditions. For this type
of problem, the proposed method is applicable in the case in which the hyperbolic
relation can be treated linearly. For the distribution of product z, the method for the
calculation of probability P, when z did not exceed a limit, was shown. From the
result of the analysis by the proposed method, it was found that the maximum and
minimum values in the scatter of the product z by the conventional method resulted in
the use of a higher confidence limit level that corresponded to +2 times greater in the

percentile value in the standard normal distribution table.
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1. Introduction

In mechanical engineering, a reliable design
approach should be taken by regarding various physi-
cal quantities as probability variables. Particularly,
this kind of approach is quite important for the prob-
lems related to quality control.

For example, in bolt tightening, as shown in Fig.
1, the torque T given to a bolt is determined as the
product of given force F' and the distance L to the
point where the force is applied. The force to be given
is scattered and the position where the force is applied
also scatters at each tightening, as typically shown in
Fig.1. Accordingly, the torque applied to a bolt has
scattering. The maximum tightening torque is calcu-
lated by taking the maximum values of the scattering
of the force F and distance L into consideration.

So far, the maximum value Tmex of the torque
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applied to a bolt has been determined by the product
of maximum value Fumax in the scattering of given
force and maximum value Lmex in that of the distance,
asin Eq.(1).

Tmax= Frmax* Lmax (1)

However, when a certain confidence limit is con-
sidered, Tmax is not determined in the simple form as
in Eq.( 1), but no research on this kind of probability
distribution and confidence limit in engineering prob-
lems has been carried out except for the papers by
Yoshimoto®” and those by the authors®®,

This report is an extension of the previous papers.
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Fig. 1 Tightening work by wrench
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It is well known that the product of two normally
distributed variables is also normally distributed.

This concept is applied to obtain the limits of
transmitted torque for a disk clutch. In the case of a
bolt, the probability variables are not the product of
two normally distributed variables but the quotient.
However, under certain conditions, it is possible to
apply the same kind of analysis.

2. Theoretical Analysis

Two independent probability variables are denot-
ed by x and y, and their product z is defined as in Eq.
(2).

z=xy (2)

Now, it is assumed that the product z is also a
probability variable, and all of the three probability
variables, x, ¥ and z, are normal distributions.
Accordingly, the probability density functions and
normal distributions of x, ¥ and z are shown in Table
1.

When Eq.(2) is shown by probability density
functions, Eq.( 3) is obtained.

z2)=71(x)-9(y) (3)

Since f(x) and g(y) are considered to be mutually
independent, #(z) becomes a coupling probability
density function. #(z) can be shown as below.

2

Wz)= ‘/%02 exp{—%ﬁ—f—LZ;’z” } (4)

On the other hand, the right side of Eq.(3) is as
below.

f(x)-9(y) . .
- Zn;,oy exp{ _ [% (x ;ﬁu:) + E ézy) ]}

(5)
Now, as mentioned above, since it was considered
that the product of f(x) and g(¥) becomes a coupling
probability density function, and is a normal distribu-
tion, Egs.(4) and (5) must be equivalent for all the
values of z, y and z. Therefore, the following equa-
tions are obtained.
0:= 21 0z 0y (6)

L (7)

Table 1 List of probability variables and functions

Variable pdf. Normal distribution
X f(x) N(px.ox2)
y g(y) N(py.ay2)
z h(z) N(pz.022)

pdt. :Probability density function
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Since r and y are mutually independent, in order
to satisfy Eq.(7) for x, y and 2, x=p: and y=ypy
when z= .. From the relation of these values and Eq.
(2), the following relationship is obtained.

Mz= M My (8)
Here, variable z is shown by Eq.(9).
2=+ ro; (9)

where 7 is a variable when z is shown by x«. and o.
(percentile valve in normal distribution).
Then, Eq.( 7) becomes as follows.
—_ 2 —_ 2
(o o)y (10

where A=70:
B=roy.

This shows the ellipse of the confidence limit, as
shown in Fig. 2. An arbitrary point on the ellipse is
denoted by p(x,y). Thus, z, the product of x and y
from Eq.(2), is given by the area enclosed by both
coordinate axes and the two straight lines passing
through this point p(x,y) parallel to them. Using the
angle 6 in the figure, z is expressed by Z(8) as fol-
lows.

Z(8)=(pz+ A-cos 8)(uy+B-+sin §) (11)

For determining the maximum value of Z(6), it
will suffice to differentiate Eq.(11) with 8 and deter-
mine the values of 8 that give the maximum and
minimum of Z(8).

Z'(8)=— A(uy+ B+sin 0)sin 6

+ B(ux+ A-cos 8)cos 8 (12)

In this case, it is obvious that point , which gives
the maximum value of Z(8) exists in the first quad-
rant of the coordinates of the ellipse in the figure, and
from the form of the function, Z(§) becomes a gradu-
ally decreasing function in the range of § from 0° to
90°, and has only one solution. This solution, &, gives
the point at which Z(6) becomes maximum. On the
other hand, it is also obvious that the point which
gives the minimum value of Z(#) is at the position
symmetrical to the center of the ellipse ; therefore, the
maximum value Zmex and minimum value Zmin of Z(8)

plx, y)
>
j>,- /—\ Ellipse of confidence limit
o v a
7 ﬂ/__ B sing
\ \ /#,_ A coso
N
X

o)

Fig. 2 Distribution for product of xr and y
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can be shown as follows.
Zmax=(pz+ A+cos 8:)(uy+ B-sin &) (13)
Zmin=(tr— A-cos 6:)(uy~ B-sin 6z) (14)
Since it is assumed that z is also a normal distri-
bution, from Egs.(13) and (14), the mean value and
standard deviation of Z(#) are determined as follows.
tz=ptxpty + 72020y °sin Gz+cos b:) (15)
0:= (120 Sin Gz + py0z cos 6z) (16)
In applying this concept to mechanical design as
in failure problems, the limit value should be consid-
ered as probability function. For example, in the yield
point design, the upper limit S, is used, and in bolted
joint design against loosening, the lower limit S, is
used, as shown in Fig. 3.
In the case of the upper limit, when z is not
greater than the upper limit S., probability P is
obtained as follows.

Pp=Prop(25 S,) 17)
And Eq.(17) is shown as follows.
Pr=Pro(uS0)= [ fulu)du (18)

when «=S.,—z.

The distribution of the difference # is also the
normal distribution which consists of mean value (e
— ¢tz) and standard deviation vd=?+ g.%, when S, and
2 are mutually independent and are normal distribu-
tions.

As is well known, standard normal distribution
F(t) is obtained as the following equation.

F(t)=’[;% exp(—%z)dt50(t) (19)

where
t=!u_£gsu_ﬂ12}
o—o0;

Thus, the probability Py is obtained as follows.
_ 0 1 AU —\Usu— Uz 2
Pf"‘[mﬁ;(amaz—) exp| ke Jo
—o(-ba—te ) -o(Lazte) ()

v O'gu + Of v Ugu + 0‘3
where us : mean value at the distribution of
upper limit

Osu : standard deviation.
On the other hand, in the case of the lower limit,

i j i
] |
[.]le S uz Z usu  Su

Fig. 3 Distribution of z and limits
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when z is not less than the lower limit S,, the probabil-
ity Psn is obtained as follows.

Pu=1- ¢(Ji(1'—§—/‘+—%fl—) (21)

where (s :mean value at the distribution of
lower limit
Os : standard deviation.

As described above, when the probabilities Pn
and Ps are known, the reliability design in mechanical
engineering problems expressed by equation z=xy
can be treated.

3. Application to Problems of Mechanical Engi-
neering

3.1 Application to the limit of transmitted tor-
que for a disk clutch

In automobiles and industrial vehicles, friction
clutches are frequently used for transmitting or cut-
ting off power. Figure 4 shows a single disk-type
friction clutch used for forklifts. Torque M. transmit-
ted through a clutch is determined by the following
equation.

Mc=Zf'ﬂc'rm'F (22)

where

zs . number of friction surfaces,

e - coefficient of friction of clutch surfaces

F : pressing force at the time of engaging clutch

rm . mean radius rn=(71+72)/2 ; where » and »; are
outer and inner radii of disk clutch, respective-
ly.

Now, in this case, it is considered that from the
geometry of the clutch, the number of frictional sur-
faces and mean radius can be treated as constants.
Thus, by setting ¢’=2z,. »a, Eq.(22) becomes.

/! (@ Housing
] (@) Release lever
= (® Thrust bearing

bl (@) shitt block

®) Yoke

@ Pressure plate

- @ cluteh disk
(@® Ctutch hub

LI N

Transmission side Engine side

Fig. 4 Disk cluch for forklift truck
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Mc=c ucF (23)

The coefficient of friction of a clutch and the
pressing force of springs at the time of engaging are
normal distributions, as seen in Table 2, according to
the experimental results of the testing of a large
number of clutch units. In addition, it has been
confirmed that the limit of transmitted torque M. is
also a normal distribution.

The coefficient of friction depends on the material
characteristics of the engaged surfaces; on the other
hand, the spring force is influenced by the scattering of
dimensions, such as the diameter and pitch in
manufacturing or the scattering of the setting length
in the clutch. It is considered that both can be treated
as independent probability variables.

Accordingly, by directly utilizing the method
described in section 2, the degree of scattering of the
transmitted torque can be reasonably shown as a
probability value by the analysis using a confidence
limit ellipse.

By setting the confidence limit value to 90% and
using the successive approximation method for Eq.
(12), the maximum angle of the confidence limit for
the limit of transmitted torque was obtained as 88.6°.
This result was shown according to Eq.(10) in Fig. 5.
Table 3 shows the summary of these results of analy-
sis.

3.2 Application to the axial tension control in
bolts

The method shown in section 2 can be applied to
problems of the z=ux/y type under special conditions.
This example is related to the axial tension control in

Table 2 List of probability variables in the case of trans-
mitted torque at disk cluch

Variable Normal distribution
pe N(0.40,0.0304%)
F(KN) N(5.25,0.159%)

Table 3 Result of analysis

Term Result
6a(*) 88.6
max 248.7
Me mean 236.2
(N-m) min 223.6
c'=112.5mm
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tightening a bolt by the calibrated wrench method. In
this section, the results of the experimental analysis of
the confidence limit of the axial tension distribution in
the tightening metric fine thread in the dry condition,
in the oil lubricated condition and by using anaerobic
adhesives Loctite 262 are reported.
From Fig. 6, the basic equation for tightening a
bolt by the calibrated wrench method is
T=KPd (24)
where
P : axial tension
T : tightening torque
K : torque coefficient
d : nominal diameter.
The axial tension distribution after tightening
bolts is expressed using Eq.(24) as follows.

P=<—1X)<%)=k- T (25)
where

k . axial tension coefficient (£=1/K)
T’ : unit tightening torque (7'= T/d).

In most cases of tightening bolts, the scattering of
axial tension coefficient & is determined essentially by
the scattering of the coefficient of friction of screw
thread surfaces and the geometry of screws. On the
other hand, as shown in Fig. 1, the scattering of tight-
ening torque T is determined by the point where force
is applied to a calibrated wrench and the force to be
given. It arises from the individuality of the workers,
the condition of tools and so on. Accordingly, it is
reasonable to consider that K and T are independent

Confidence limit=90%
Mcmax=CMc’'mox

5.25

AR
AN

T—3¢

.35 0.4 0.45
e
Fig. 5 Limit transmitted torque by confidence limit

o
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probability variables.

Now, it is assumed that %, 7’ and P are proba-
bility density functions, as shown in Table 4, and are
normal distributions.

Tool coefficient a (expressing the scattering of
tightening torque due to differences among tightening
tools or workers) is shown as follows.

— Tmax_ Tmln
a= 2 Tmean (26)
#7= Thmean (27)
or :”a; Trean (28)

From Eq.(25), the relation between axial tension
coefficient £ and torque coefficient K becomes a
hyperbola. Usually, torque coefficient K is about 0.2,
and in the range around this value the relationship can
be treated linearly from the form of the hyperbola ;
axial tension coefficient % also is a normal distribution
if K is a normal distribution. Then axial tension
coefficient % is expressed by Eq.(29) in practical use.

k - (kmax - kmln)K + (Kmnx * kmnx _ Knln * kmlnz
Kmax - Kmin

(29)

Table 4 List of probability variables in the case of axial
tension control on tightening bolt.

Varigble pdf. Normal distribution
k (k) N(pk.ox2)
T 9(T") N(pr.or2)
P h(p) N(pr.ar2)

pdf, :Probabllity denslty function
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Fig. 6 Relationship between tightening torque and axial
tension

Series 111, Vol. 33, No. 2, 1990

Mean value p and standard deviation o. of k& are
obtained as follows.

O ey 0

S oy o D
Thus, Eq.(12) is expressed as follows.

zZ(6)

=[_{@%"ﬂﬁ+(Kmax—Km)sin 0]sin 6

+{(Kmax_Kmln)(%+COS 0)}005 0]
aT, '
X T Kun: Kom (32)
In this case, solution 6: is determined uniquely
only by knowing the physical properties and
probabilistic statistical properties of the screws and
tools, namely the torque coefficient and tool
coefficient. €; is independent of the value of tightening
torque and dimensions of screws.
From Eqs.(15) and (16), mean value g, and stan-
dard deviation o, of scattering of axial tension
become as follows.

o= (Kot o Kaws— a1 5,.c00,)

szsx . Kmln Kmax . Kmln
Tmean
" d (33)
Op= (% sin 6, + g_zﬁ%_fflgmlcos 6;)
Tmean
T (34)

As described above, it was also shown that the
problem of the Z=X/Y type can be analyzed by using
a confidence limit ellipse, expressing it as Z = Xy(y=
1/Y), under the condition that the approximation can
be made with such a linear relation obtained as the
following equation.

y=aY+c (35)

where ¢ and ¢. are constants.

The distribution of axial tension can be quantita-
tively shown by the characteristic values of tightening
bolts which are determined experimentally.

An axial tension meter (Skidmore J-type Stan-
dard) was used for the measurement of the torque
coefficient. The experimental conditions were selected
by the two-way layout method using the lubricating
condition and screw size as factors, as shown in Table
5. Table 6 shows the mean value Kmean and the 95 %
confidence limit from the experimental results.

The actual confidence limit ellipse using the
experimental results in Table 6 and taking the tool
coefficient as a=0.2 is shown in Fig. 7.
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4. Discussion

4.1 Effect of higher initial axial tension

It has been considered that the state of proper
tightening of bolts gives sufficiently high axial tension
so that no breaking or loosening takes place during
operation. The advantage of applying this method to
the control of the axial tension in bolts is that it
allows us to give higher initial tension to bolts. As
shown earlier in Fig. 6, the maximum value of axial
tension by the conventional concept is indicated by
point ¢ ; the intersection of the maximum value of
tightening torque and the minimum value of torque
coefficient, and the axial tension has been thought to
be apparently normally distributed. However, the
point ¢ is outside of the confidence ellipse obtained by
this method and the result is that the actual confidence
limit is higher than that which has been assumed. A
comparison of this method and the conventional one is
shown in Fig. 8. The confidence limit ellipse on a
bolt-tightening diagram is schematically shown in
Fig.8(a), and details are shown in Fig.8(b).

In the conventional method, the apparent distribu-
tion of the axial tension was between point ¢ and
point 7, but in the case of using a confidence limit
ellipse as the proposed method, it is actually a normal
distribution between point s and point ¢{. Point s is
lower than point ¢, and has a margin for the yield
load. Therefore, the proposed method can raise point
s to point %, which reaches the same level as point g,
and at this time, the lower limit point ¢ is raised to
point v. Thus, this method can obtain higher axial
tension, as shown at the beginning.

4.2 Quantitative evaluation of conventional
method and proposed method

Regarding the results of the application to the

Table 5 Two-way layout test condition

Lubrication bott M12 M16
Dry 1-1 2-1
Machine oll 1-2 2-2
Loctite 262 1-3 2-3

Table 6 Experimental analysis for torque coefficient
(mean valve and confidence limit)

Condition Min Mean Max
Dry 0.498 0564 0.630

Machine oil o164 0.176 0.1 88

Loctite 262 0214 0.229 0.244
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limit of transmitted torque for a disk clutch in section
3.1, a quantitative examination was carried out. In
section 3.1, the 90 % confidence limit value was deter-
mined by using a confidence limit ellipse. On the other
hand, in the conventional method, the limit of trans-
mitted torque is determined by Eq.(36).

Mcmax=C,ﬂcmameax (36)

However, as shown in Fig.9, this point of Mcmax
exists on the confidence limit ellipse that indicates the
boundary of a higher confidence limit value. This
higher confidence limit ellipse through this point yields
the Eq.(37).

I — Ux 2 - 2 —
el ) (s (37)
From the comparison of Eq.(10), the confidence limit
value corresponds to 2 times higher at the percentile

0.5
L _Dry
X 0.3
_Loctite 262
0.2 Machine oll
L | —acnine O%.
_¥
0.8 1.0 1.2

T/T mean

Fig. 7 Characteristic distribution by confidence limit

>
.. ————proposed method
e ST g
Pmean}—- 7%?%3 \; /,4: /
Pmin /// g ’ ’/v
3 s H eltipse of
_a g A i
5= / //14\\

distribution of
tightening torque

meaon
max

T/(Ard)

b) comporison of proposed method vs
conventional method

a) tightening diagram

Fig. 8 Axial tension distribution
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Fmax Mcmax

Fmean +

Fmin

N

Hemin Hemean Hemox

Fig. 9 Compare the comfidence limit

value in normal distribution. The relation is quantita-
tively determined and compared, and the results are
shown in Table 7. As shown in the table, it is known
that the conventional method resulted in an excessive
evaluation.

5. Conclusions

The results can be summarized as follows.

1) The problem of the product of two indepen-
dent probability variables which are normally dis-
tributed was theoretically analyzed using the
confidence limit ellipse.

2) For this distribution of product z, the method
for the calculation of probability P, when z did not
exceed a limit, was shown.

3) As an example for the z=x/y type problem,

Table 7 Comparison of limit of transmitted torque

Mc max(N:m) r Cc.L.
Proposed method 248. 7 1.645 90.0 %
Conventional method { 279. O 2.326 |98.0 %

C.L ‘ confidence limit

the limit of transmitted torque analysis in a disk
clutch at the 90 % confidence limit was carried out,
and a rational result was obtained by the proposed
method.

4) For the z=x/y type problem, the proposed
method is applicable to the axial tension control on a
bolted joint in the case in which the hyperbolic rela-
tion can be treated as linear.

5) From the result of the analysis by the
proposed method, it was found that the maximum and
minimum values in the scatter of the product z by the
conventional method resulted in the unintentional use
of a higher confidence limit level. The confidence limit
level corresponded to +2 times greater in the per-
centile value in the standard normal distribution table.

References

(1) Yoshimoto, I, Trans. Jpn. Soc. Mech. Eng.,(in
Japanese), Vol. 38, No. 315, Part 3(1973), p. 3017.

(2) Hareyama, S., A Study on Bolt Axial Tension
Control by the Calibrated Wrench Method(1 st
Report, Distribution of Bolt Axial Tension),
Trans. Jpn. Soc. Mech. Eng.,(in Japanese), Vol.
53, No. 495, C(1987), p. 2373.

(3) Hareyama, S. and Nakamura, T., A Study on Bolt
Axial Tension Control by the Calibrated Wrench
Method (2nd Report, Increase of Initial Axial
Tension by the Ellipse of Confidence Limit ),
Trans. Jpn. Soc. Mech. Eng., (in Japanese), Vol. 54,
No. 508, C(1988), p. 3048.

Series 111, Vol. 33, No. 2, 1990

JSME International Journal

NI | -El ectronic Library Service



